Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work introduces Private Eyes, the first zero-leakage biometric database. The only leakage of the system is unavoidable: 1) the log of the dataset size and 2) the fact that a query occurred. Private Eyes is built from oblivious symmetric searchable encryption. Approximate proximity queries are used: given a noisy reading of a biometric, the goal is to retrieve all stored records that are close enough according to a distance metric. Private Eyes combines locality sensitive-hashing or LSHs (Indyk and Motwani, STOC 1998) and oblivious maps which map keywords to values. One computes many LSHs of each record in the database and uses these hashes as keywords in the oblivious map with the matching biometric readings concatenated as the value. At search time with a noisy reading, one computes the LSHs and retrieves the disjunction of the resulting values from the map. The underlying oblivious map needs to answer disjunction queries efficiently. We focus on the iris biometric which requires a large number of LSHs, approximately 1000. Boldyreva and Tang’s (PoPETS 2021) design yields a suitable map for a small number of LSHs (their application was in zeroleakage k-nearest-neighbor search). Our solution is a zero-leakage disjunctive map designed for the setting when most clauses do not match any records. For the iris, on average at most 6% of LSHs match any stored value. We evaluate using the ND-0405 dataset; this dataset has 356 irises suitable for testing. To scale our evaluation, we use a generative adversarial network to produce synthetic irises. Accurate statistics on sizes beyond available datasets is crucial to optimizing the cryptographic primitives. This tool may be of independent interest. For the largest tested parameters of a 5000 synthetic iris database, a search requires 18 rounds of communication and 25ms of parallel computation. Our scheme is implemented and open-sourced.more » « lessFree, publicly-accessible full text available June 4, 2026
-
Pöpper, Christina; Batina, Lejla (Ed.)Fuzzy extractors derive stable keys from noisy sources non-interactively (Dodis et al., SIAM Journal of Computing 2008). Since their introduction, research has focused on two tasks: 1) showing security for as many distributions as possible and 2) providing stronger security guarantees including allowing one to enroll the same value multiple times (reusability), security against an active attacker (robustness), and preventing leakage about the enrolled value (privacy). Given the need for progress on the basic fuzzy extractor primitive, it is prudent to seek generic mechanisms to transform a fuzzy extractor into one that is robust, private, and reusable so that it can inherit further improvements. This work asks if one can generically upgrade fuzzy extractors to achieve robustness, privacy, and reusability. We show positive and negative results: we show upgrades for robustness and privacy, but we provide a negative result on reuse. 1. We upgrade (private) fuzzy extractors to be robust under weaker assumptions than previously known in the common reference string model. 2. We show a generic upgrade for a private fuzzy extractor using multi-bit compute and compare (MBCC) obfuscation (Wichs and Zirdelis, FOCS 2017) that requires less entropy than prior work. 3. We show one cannot arbitrarily compose private fuzzy extractors. In particular, we show that assuming MBCC obfuscation and collision-resistant hash functions, there does not exist a private fuzzy extractor secure against unpredictable auxiliary inputs, strengthening a negative result of Brzuska et al. (Crypto 2014).more » « less
-
Biometric databases collect people's information and perform proximity search (finding records within bounded distance of the query) with few cryptographic protections. This work studies proximity searchable encryption applied to the iris biometric. Prior work proposed to build proximity search from inner product functional encryption (Kim et al., SCN 2018). This work identifies and closes two gaps in this approach: 1. Biometrics use long vectors, often with thousands of bits. Many inner product encryption schemes have to invert a matrix whose dimension scales with this size. Setup is then not feasible on commodity hardware. We introduce a technique that improves setup efficiency without harming accuracy. 2.Prior approaches leak distance between queries and all stored records. We propose a construction from function hiding, predicate, inner product encryption (Shen et al., TCC 2009) that avoids this leakage. Finally, we show that our scheme can be instantiated using symmetric pairing groups, which improves search efficiency.more » « less
-
We give the first constructions in the plain model of 1) nonmalleable digital lockers (Canetti and Varia, TCC 2009) and 2) robust fuzzy extractors (Boyen et al., Eurocrypt 2005) that secure sources with entropy below 1/2 of their length. Constructions were previously only known for both primitives assuming random oracles or a common reference string (CRS). Along the way, we define a new primitive called a nonmalleable point function obfuscation with associated data. The associated data is public but protected from all tampering. We use the same paradigm to then extend this to digital lockers. Our constructions achieve nonmalleability over the output point by placing a CRS into the associated data and using an appropriate non-interactive zero-knowledge proof. Tampering is protected against the input point over low-degree polynomials and over any tampering to the output point and associated data. Our constructions achieve virtual black box security. These constructions are then used to create robust fuzzy extractors that can support low-entropy sources in the plain model. By using the geometric structure of a syndrome secure sketch (Dodis et al., SIAM Journal on Computing 2008), the adversary’s tampering function can always be expressed as a low-degree polynomial; thus, the protection provided by the constructed nonmalleable objects suffices.more » « less
-
Biometric databases collect people's information and allow users to perform proximity searches (finding all records within a bounded distance of the query point) with few cryptographic protections. This work studies proximity searchable encryption applied to the iris biometric. Prior work proposed inner product functional encryption as a technique to build proximity biometric databases (Kim et al., SCN 2018). This is because binary Hamming distance is computable using an inner product. This work identifies and closes two gaps to using inner product encryption for biometric search: Biometrics naturally use long vectors often with thousands of bits. Many inner product encryption schemes generate a random matrix whose dimension scales with vector size and have to invert this matrix. As a result, setup is not feasible on commodity hardware unless we reduce the dimension of the vectors. We explore state of the art techniques to reduce the dimension of the iris biometric and show that all known techniques harm the accuracy of the resulting system. That is, for small vector sizes multiple unrelated biometrics are returned in the search. For length 64 vectors, at a 90% probability of the searched biometric being returned, 10% of stored records are erroneously returned on average. Rather than changing the feature extractor, we introduce a new cryptographic technique that allows one to generate several smaller matrices. For vectors of length 1024 this reduces time to run setup from 23 days to 4 minutes. At this vector length, for the same $90%$ probability of the searched biometric being returned, .02% of stored records are erroneously returned on average. Prior inner product approaches leak distance between the query and all stored records. We refer to these as distance-revealing. We show a natural construction from function hiding, secret-key, predicate, inner product encryption (Shen, Shi, and Waters, TCC 2009). Our construction only leaks access patterns, and which returned records are the same distance from the query. We refer to this scheme as distance-hiding. We implement and benchmark one distance-revealing and one distance-hiding scheme. The distance-revealing scheme can search a small (hundreds) database in 4 minutes while the distance-hiding scheme is not yet practical, requiring 3.5 hours.more » « less
An official website of the United States government
